Open-access <span name="style_bold">Inferring possible population divergence in </span><span name="style_italic">Espeletia pycnophylla </span><span name="style_bold">(Asteraceae) through morphometric and paleogeographic approaches</span>

The phenotypic structure within and between plant populations is generally influenced by their distribution patterns in space and time; therefore, the study of their divergence is a central issue for the understanding of their microevolutive processes. We boarded the hypothesis that three populations of <span name="style_italic">Espeletia pycnophylla </span>show phenotypic divergence as one of the possible implications of their geographic isolation in the Southern Colombian Andes. We used the Elliptic Fourier Descriptors (leaf shape) and traditional leaf morphometry (leaf size) of 347 leaves to measure inter and intra-population variation and a comparison between a paleogeographic reconstruction with an actual estimate of the distribution areas of <span name="style_italic">E. pycnophylla </span>in order to identify their main changes during the last 14 000 years. The three populations showed significant differences in leaf morphometry and a positive correlation between the matrices of morphometric and geographic dissimilarities, indicating that the inter-population divergence increases between further populations, so that the morphometric structure reflects their spatial distribution. The geographical and paleogeographical estimates evidenced a conspicuous process of reduction and fragmentation of the distribution area of <span name="style_italic">E. pycnophylla </span>since the Late-Glacial until the Holocene. We suggest that these results support possible scenarios of vicariance events, which allow us to approach the divergence of these populations in terms of their historic biogeographic relations. However, genetic analyses are still needed to support these results. Rev. Biol. Trop. 58 (4): 1261-1270. Epub 2010 December 01.since the Late-Glacial until the Holocene. We suggest that these results support possible scenarios of vicariance events, which allow us to approach the divergence of these populations in terms of their historic biogeographic relations. However, genetic analyses are still needed to support these results. Rev. Biol. Trop. 58 (4): 1261-1270. Epub 2010 December 01.

population divergence; leaf morphometry; vicariance; Espeletia pycnophylla; paramos; elliptic fourier descriptors


location_on
None Universidad de Costa Rica. Escuela de Biología, 2060 San José, Costa Rica, San Pedro, San José, CR, 2060, 2511-5500 , 2511-5550 - E-mail: rbt@biologia.ucr.ac.cr
rss_feed Acompanhe os números deste periódico no seu leitor de RSS
Acessibilidade / Reportar erro