Resumen
La mayoría de los datos en ciencias sociales y educación presentan valores perdidos debido al abandono del estudio o la ausencia de respuesta. Los métodos para el manejo de datos perdidos han mejorado dramáticamente en los últimos años, y los programas computacionales ofrecen en la actualidad una variedad de opciones sofisticadas. A pesar de la amplia disponibilidad de métodos considerablemente justificados, muchos investigadores e investigadoras siguen confiando en técnicas viejas de imputación que pueden crear análisis sesgados. Este artículo presenta una introducción conceptual a los patrones de datos perdidos. Seguidamente, se introduce el manejo de datos perdidos y el análisis de los mismos con base en los mecanismos modernos del método de máxima verosimilitud con información completa (FIML, siglas en inglés) y la imputación múltiple (IM). Asimismo, se incluye una introducción a los diseños de datos perdidos así como nuevas herramientas computacionales tales como la función Quark y el paquete semTools. Se espera que este artículo incentive el uso de métodos modernos para el análisis de los datos perdidos.
Palabras clave datos perdidos; máxima verosimilitud con información completa; imputación múltiple; diseños de datos perdidos; psicometría.